Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.09.03.23294989

RESUMEN

Background. The overlapping clinical presentations of patients with acute respiratory disease can complicate disease diagnosis. Whilst PCR diagnostic methods to identify SARS-CoV-2 are highly sensitive, they have their shortcomings including false-positive risk and slow turnaround times. Changes in host gene expression can be used to distinguish between disease groups of interest, providing a viable alternative to infectious disease diagnosis. Methods. We interrogated the whole blood gene expression profiles of patients with COVID-19 (n=87), bacterial infections (n=88), viral infections (n=36), and not-infected controls (n=27) to identify a sparse diagnostic signature for distinguishing COVID-19 from other clinically similar infectious and non-infectious conditions. The sparse diagnostic signature underwent validation in a new cohort using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and then underwent further external validation in an independent in silico RNA-seq cohort. Findings. We identified a 10-gene signature (OASL, UBP1, IL1RN, ZNF684, ENTPD7, NFKBIE, CDKN1C, CD44, OTOF, MSR1) that distinguished COVID-19 from other infectious and non-infectious diseases with an AUC of 87.1% (95% CI: 82.6%-91.7%) in the discovery cohort and 88.7% and 93.6% when evaluated in the RT-qPCR validation, and in silico cohorts respectively. Interpretation. Using well-phenotyped samples collected from patients admitted acutely with a spectrum of infectious and non-infectious syndromes, we provide a detailed catalogue of blood gene expression at the time of hospital admission. The findings result in the identification of a 10-gene host diagnostic signature to accurately distinguish COVID-19 from other infection syndromes presenting to hospital. This could be developed into a rapid point-of-care diagnostic test, providing a valuable syndromic diagnostic tool for future early pandemic use.


Asunto(s)
Enfermedades Transmisibles Emergentes , Infecciones , Síndrome Respiratorio Agudo Grave , Infecciones Bacterianas , Enfermedades Transmisibles , Virosis , COVID-19
2.
researchsquare; 2022.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1765213.v1

RESUMEN

Developing multiplex PCR assays requires an extensive amount of experimental testing, the number of which exponentially increases by the number of multiplexed targets. Dedicated efforts must be devoted to the design of optimal multiplex assays for specific and sensitive identification of multiple analytes in a single well reaction. Inspired by data-driven approaches, we reinvent the way of designing and developing multiplex assays by proposing a hybrid, easy-to-use workflow, named Smart-Plexer, which couples empirical testing of singleplex assays and computer simulation of multiplexing. The Smart-Plexer leverages kinetic inter-target distances among amplification curves to generate optimal multiplex PCR primer sets for accurate multi-pathogen identification. The optimal single-channel assays, together with a novel data-driven approach, Amplification Curve Analysis (ACA), were demonstrated to be capable of classifying the presence of desired targets in a single test for seven common respiratory infection pathogens.

3.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.04.11.487847

RESUMEN

ABSTRACT Real-time digital PCR (qdPCR) coupled with artificial intelligence has shown the potential of unlocking scientific breakthroughs, particularly in the field of molecular diagnostics for infectious diseases. One of the most promising applications is the use of machine learning (ML) methods to enable single fluorescent channel PCR multiplex by extracting target-specific kinetic and thermodynamic information contained in amplification curves. However, the robustness of such methods can be affected by the presence of undesired amplification events and nonideal reaction conditions. Therefore, here we proposed a novel framework to filter non-specific and low efficient reactions from qdPCR data using outlier detection algorithms purely based on sigmoidal trends of amplification curves. As a proof-of-concept, this framework is implemented to improve the classification performance of the recently reported ML-based Amplification Curve Analysis (ACA), using available data from a previous publication where the ACA method was used to screen carbapenemase-producing organisms in clinical isolates. Furthermore, we developed a novel strategy, named Adaptive Mapping Filter (AMF), to consider the variability of positive counts in digital PCR. Over 152,000 amplification events were analyzed. For the positive reactions, filtered and unfiltered amplification curves were evaluated by comparing against melting peak distribution, proving that abnormalities (filtered out data) are linked to shifted melting distribution or decreased PCR efficiency. The ACA was applied to compare classification accuracies before and after AMF, showing an improved sensitivity of 1.18% for inliers and 20% for outliers (p-value < 0.0001). This work explores the correlation between kinetics of amplification curves and thermodynamics of melting curves and it demonstrates that filtering out non-specific or low efficient reactions can significantly improve the classification accuracy for cutting edge multiplexing methodologies.


Asunto(s)
Mareo por Movimiento Espacial , Enfermedades Transmisibles
4.
ssrn; 2021.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3766286

RESUMEN

Background: Emergency hospital admissions for infection often lack microbiological diagnostic certainty. Novel approaches to discriminate likelihood of bacterial and viral infections are required to support antimicrobial prescribing decisions and infection control practice. We sought to derive and validate a blood transcriptional signature to differentiate bacterial infections from viral infections including COVID-19.Methods: Blood RNA sequencing was performed on a discovery cohort of adults attending the Emergency Department with confirmed bacteraemia or viral infection. Differentially expressed host genes were subjected to feature selection to derive the most parsimonious discriminating signature. RT-qPCR validation of the signature was then performed in a prospective cohort of patients presenting with undifferentiated fever and a second case-control cohort of patients with bacteraemia or COVID-19.Findings: A 3-gene transcript signature was derived from the discovery cohort of 56 definite bacterial and 27 viral infection cases. In the validation cohort, the signature differentiated bacterial and viral infections with an area under receiver operating characteristic curve (AUC) of 0.976 (95% CI: 0.919-1.000), sensitivity 97.3% and specificity of 100%. The AUC for C-reactive protein and leucocyte count was 0.833 (95% CI: 0.694-0.944) and 0.938 (95% CI: 0.840-0.986) respectively. In the second validation analysis the signature discriminated 34 SARS-CoV-2 positive COVID-19 from 35 bacterial infections with AUC of 0.953 (95% CI: 0.893-0.992), sensitivity 88.6% and specificity of 94.1%.Interpretation: This novel 3-gene signature discriminates viral infections including COVID-19 from bacterial sepsis in adults, outperforming both leucocyte count and CRP, thus potentially providing significant clinical utility in managing acute presentations with infection.Funding Statement: Work in this study was funded by the NIHR Imperial Biomedical Research Centre, the Medical Research Council, the Wellcome Trust and the European Union FP7 (EC-GA 279185) (EUCLIDS).Declaration of Interests: None of the authors have any relevant interest to declare. Ethics Approval Statement: Ethical approval was obtained to take deferred consent from patients from whom an RNA specimen had been collected (or from next of kin or nominated consultee) (REC references 14/SC/0008 and 19/SC/0116).


Asunto(s)
Manifestaciones Neurológicas , Fiebre , Sepsis , Infecciones Bacterianas , Urgencias Médicas , Infecciones Virales del Ojo , COVID-19 , Enfermedad de la Hemoglobina SC
5.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20142349

RESUMEN

The COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (< 20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 90.55% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 {+/-} 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n=40), showing average detection times of 12.89 {+/-} 2.59 min for positive samples (n=34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geo-localization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA